Abstract

This paper introduces a reinforcement learning method that leverages task decomposition and a task-specific reward system to address complex high-level tasks, such as door opening, block stacking, and nut assembly. These tasks are decomposed into various subtasks, with the grasping and putting tasks executed through single joint and gripper actions, while other tasks are trained using the SAC algorithm alongside the task-specific reward system. The task-specific reward system aims to increase the learning speed, enhance the success rate, and enable more efficient task execution. The experimental results demonstrate the efficacy of the proposed method, achieving success rates of 99.9% for door opening, 95.25% for block stacking, 80.8% for square-nut assembly, and 90.9% for round-nut assembly. Overall, this method presents a promising solution to address the challenges associated with complex tasks, offering improvements over the traditional end-to-end approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.