Abstract

In this paper, a reinforcement learning-based adaptive control algorithm is proposed to solve the tracking problem of a discrete-time (DT) nonlinear state and input time delayed system of the wheeled mobile robot (WMR). With the typical model of the WMR transformed into an affine nonlinear DT system, a delay matrix function and appropriate Lyapunov–Krasovskii functionals are introduced to overcome the problems caused by the state and input time delays, respectively. Furthermore, with the approximation of the radial basis function neural networks (NNs), the adaptive controller, the critic NN, and action NN adaptive laws are defined to guarantee the uniform ultimate boundedness of all signals in the WMR system, and the tracking errors convergence to a small compact set to zero. Two examples of simulation are given to illustrate the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.