Abstract

In this paper, we address the autonomous control of a 3D snake-like robot through the use of reinforcement learning, and we apply it in a dynamic environment. In general, snake-like robots have high mobility that is realized by many degrees of freedom, and they can move over dynamically shifting environments such as rubble. However, this freedom and flexibility leads to a state explosion problem, and the complexity of the dynamic environment leads to incomplete learning by the robot. To solve these problems, we focus on the properties of the actual operating environment and the dynamics of a mechanical body. We design the body of the robot so that it can abstract small, but necessary state-action space by utilizing these properties, and we make it possible to apply reinforcement learning. To demonstrate the effectiveness of the proposed snake-like robot, we conduct experiments; from the experimental results we conclude that learning is completed within a reasonable time, and that effective behaviors for the robot to adapt itself to an unknown 3D dynamic environment were realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.