Abstract

In this paper, we propose a BitTorrent-like protocol that replaces the peer selection mechanisms in the regular BitTorrent protocol with a novel reinforcement learning based mechanism. The inherent operation of P2P systems, which involves repeated interactions among peers over a long time period, allows peers to efficiently identify free-riders as well as desirable collaborators by learning the behavior of their associated peers. Thus, it can help peers improve their download rates and discourage free-riding (FR), while improving fairness. We model the peers' interactions in the BitTorrent-like network as a repeated interaction game, where we explicitly consider the strategic behavior of the peers. A peer that applies the reinforcement learning based mechanism uses a partial history of the observations on associated peers' statistical reciprocal behaviors to determine its best responses and estimate the corresponding impact on its expected utility. The policy determines the peer's resource reciprocations with other peers, which would maximize the peer's long-term performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.