Abstract
One of the most widely used strategies for visual object detection is based on exhaustive spatial hypothesis search. While methods like sliding windows have been successful and effective for many years, they are still brute-force, independent of the image content and the visual category being searched. In this paper we present principled sequential models that accumulate evidence collected at a small set of image locations in order to detect visual objects effectively. By formulating sequential search as reinforcement learning of the search policy (including the stopping condition), our fully trainable model can explicitly balance for each class, specifically, the conflicting goals of exploration – sampling more image regions for better accuracy –, and exploitation – stopping the search efficiently when sufficiently confident about the target's location. The methodology is general and applicable to any detector response function. We report encouraging results in the PASCAL VOC 2012 object detection test set showing that the proposed methodology achieves almost two orders of magnitude speed-up over sliding window methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.