Abstract

We study the robust stabilization problem of a class of nonlinear systems with asymmetric saturating actuators and mismatched disturbances. Initially, we convert such a robust stabilization problem into a nonlinear-constrained optimal control problem by constructing a discounted cost function for the auxiliary system. Then, for the purpose of solving the nonlinear-constrained optimal control problem, we develop a simultaneous policy iteration (PI) in the reinforcement learning framework. The implementation of the simultaneous PI relies on an actor–critic architecture, which employs actor and critic neural networks (NNs) to separately approximate the control policy and the value function. To determine the actor and critic NNs’ weights, we use the approach of weighted residuals together with the typical Monte-Carlo integration technique. Finally, we perform simulations of two nonlinear plants to validate the established theoretical claims.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.