Abstract

With the rapid advance of information technology, network systems have become increasingly complex and hence the underlying system dynamics are typically unknown or difficult to characterize. Finding a good network control policy is of significant importance to achieving desirable network performance (e.g., high throughput or low average job delay). Online/sequential learning algorithms are well-suited to learning the optimal control policy from observed data for systems without the information of underlying dynamics. In this work, we consider using model-based reinforcement learning (RL) to learn the optimal control policy of queueing networks so that the average job delay (or equivalently the average queue backlog) is minimized. Existing RL techniques, however, cannot handle the unbounded state spaces of the network control problem. To overcome this difficulty, we propose a new algorithm, called Piecewise Decaying ε-Greedy Reinforcement Learning (PDGRL), which applies model-based RL methods over a finite subset of the state space. We establish that the average queue backlog under PDGRL with an appropriately constructed subset can be arbitrarily close to the optimal result. We evaluate PDGRL in dynamic server allocation and routing problems. Simulations show that PDGRL minimizes the average queue backlog effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.