Abstract

Compared with capital improvement projects, real-time control of stormwater systems may be a more effective and efficient approach to address the increasing risk of flooding in urban areas. One way to automate the design process of control policies is through reinforcement learning (RL). Recently, RL methods have been applied to small stormwater systems and have demonstrated better performance over passive systems and simple rule-based strategies. However, it remains unclear how effective RL methods are for larger and more complex systems. Current RL-based control policies also suffer from poor convergence and stability, which may be due to large updates made by the underlying RL algorithm. In this study, we use the Proximal Policy Optimization (PPO) algorithm and develop control policies for a medium-sized stormwater system that can significantly mitigate flooding during large storm events. Our approach demonstrates good convergence behavior and stability, and achieves robust out-of-sample performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call