Abstract

We present a novel guidance law that uses observations consisting solely of seeker line-of-sight angle measurements and their rate of change. The policy is optimized using reinforcement meta-learning and demonstrated in a simulated terminal phase of a mid-course exo-atmospheric interception. Importantly, the guidance law does not require range estimation, making it particularly suitable for passive seekers. The optimized policy maps stabilized seeker line-of-sight angles and their rate of change directly to commanded thrust for the missile's divert thrusters. Optimization with reinforcement meta-learning allows the optimized policy to adapt to target acceleration, and we demonstrate that the policy performs better than augmented zero-effort miss guidance with perfect target acceleration knowledge. The optimized policy is computationally efficient and requires minimal memory, and should be compatible with today's flight processors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.