Abstract

Blockchain technology, based on decentralized data storage and distributed consensus design, has became a promising solution to address data security risks and provide privacy protection in the Internet-of-Things (IoT) due to its tamper-proof and non-repudiation features. Although blockchain typically does not require the endorsement of third-party trust organizations, it mostly needs to perform necessary mathematical calculations to prevent malicious attacks, which results in stricter requirements for computation resources on the participating devices. By offloading the computation tasks required to support blockchain consensus to edge service nodes or the cloud, while providing data privacy protection for IoT applications, it can effectively address the limitations of computation and energy resources in IoT devices. However, how to make reasonable offloading decisions for IoT devices remains an open issue. Due to the excellent self-learning ability of Reinforcement Learning (RL), this paper proposes a RL enabled Swarm Intelligence Optimization Algorithm (RLSIOA) that aims to improve the quality of initial solutions and achieve efficient optimization of computation task offloading decisions. The algorithm considers various factors that may affect the revenue obtained by IoT devices executing consensus algorithms (e.g., Proof-of-Work), It optimizes the proportion of sub-tasks to be offloaded and the scale of computing resources to be rented from the edge and cloud to maximize the revenue of devices. Experimental results show that RLSIOA can obtain higher-quality offloading decision-making schemes at lower latency costs compared to representative benchmark algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.