Abstract

Model uncertainties are considered in a learning-based control framework that combines control dependent barrier function (CDBF), time-varying control barrier function (TCBF), and control Lyapunov function (CLF). Tracking control is achieved by CLF, while safety-critical constraints during tracking are guaranteed by CDBF and TCBF. A reinforcement learning (RL) method is applied to jointly learn model uncertainties that related to CDBF, TCBF, and CLF. The learning-based framework eventually formulates a quadratic programming (QP) with different constraints of CDBF, TCBF and CLF involving model uncertainties. It is the first time to apply the proposed learning-based framework for safety-guaranteed tracking control of automated vehicles with uncertainties. The control performances are validated for two different single-lane change maneuvers via Simulink/CarSim® co-simulation and compared for the cases with and without learning. Moreover, the learning effects are discussed through explainable constraints in the QP formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.