Abstract
Reinforcement learning (RL), which is a class of machine learning, provides a framework by which a system can learn from its previous interactions with its environment to efficiently select its actions in the future. RL has been used in a number of application fields, including game playing, robotics and control, networks, and telecommunications, for building autonomous systems that improve themselves with experience. It is commonly accepted that RL is suitable for solving optimization problems related to distributed systems in general and to routing in networks in particular. RL also has reasonable overhead—in terms of control packets, memory and computation—compared to other optimization techniques used to solve the same problems. Since the mid-1990s, over 60 protocols have been proposed, with major or minor contributions in the field of optimal route selection to convey packets in different types of communication networks under various user QoS requirements. This paper provides a comprehensive review of the literature on the topic. The review is structured in a way that shows how network characteristics and requirements were gradually considered over time. Classification criteria are proposed to present and qualitatively compare existing RL-based routing protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.