Abstract

AbstractThis article investigates a reinforcement learning‐based optimal backstepping control strategy for strict‐feedback nonlinear systems, which contain output constraints, external disturbances and uncertain unknown dynamics. The simplified reinforcement learning algorithm with the identifier‐critic‐actor architecture is constructed in the control design to build optimal virtual and actual controllers. To compensate for the disturbance, a lemma is adopted to transform external disturbances into an unknown “bounding functions‘’, which satisfy a triangular condition. Moreover, the unknown nonlinear functions, which composed of unknown dynamics and external disturbances, approximated by neural networks. Meanwhile, in order to avoid violating output constraints, a barrier‐type Lyapunov function approach is integrated into the optimal control strategy to satisfy output constraints requirements under the framework of backstepping technique. Furthermore, the presented optimal control strategy guarantees that all signals in the closed‐loop system are semi‐globally uniformly ultimately bounded. Finally, the effectiveness of the proposed optimal control approach is performed by a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.