Abstract

Due to the problems of high bit error rate and delay, low bandwidth and limited energy of sensor nodes in underwater acoustic sensor network (UASN), it is particularly important to design a routing protocol with high reliability, strong robustness, low end-to-end delay and high energy efficiency which can flexibly be employed in dynamic network environment. Therefore, a reinforcement learning-based opportunistic routing protocol (RLOR) is proposed in this paper by combining the advantages of opportunistic routing and reinforcement learning algorithm. The RLOR is a kind of distributed routing approach, which comprehensively considers nodes’ peripheral status to select the appropriate relay nodes. Additionally, a recovery mechanism is employed in RLOR to enable the packets to bypass the void area efficiently and continue to forward, which improves the delivery rate of data in some sparse networks. The simulation results show that, compared with other representative underwater routing protocols, the proposed RLOR performs well in end-to-end delay, reliability, energy efficiency and other aspects in underwater dynamic network environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.