Abstract
In this paper, reinforcement learning (RL) based cognitive anti-jamming system employing full duplex tactical radio is investigated under electromagnetic spectrum warfare scenario. Firstly, the analytical expressions of jamming sensing based on improved energy detection are derived to calculate the reward metric. Then, we propose the multidomain anti-jamming strategies based on different learning algorithm and the accurate reward. Simulation results indicate that learning-based cognitive anti-jamming strategies may increase about 25% of the throughput of tactical radio. Moreover, the upper confidence bound and Thompson sampling strategies almost have the same performance and they are superior to other RL anti-jamming schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.