Abstract
This article investigates the fault-tolerant formation control (FTFC) problem for networked fixed-wing unmanned aerial vehicles (UAVs) against faults. To constrain the distributed tracking errors of follower UAVs with respect to neighboring UAVs in the presence of faults, finite-time prescribed performance functions (PPFs) are developed to transform the distributed tracking errors into a new set of errors by incorporating user-specified transient and steady-state requirements. Then, the critic neural networks (NNs) are developed to learn the long-term performance indices, which are used to evaluate the distributed tracking performance. Based on the generated critic NNs, actor NNs are designed to learn the unknown nonlinear terms. Moreover, to compensate for the reinforcement learning errors of actor-critic NNs, nonlinear disturbance observers (DOs) with skillfully constructed auxiliary learning errors are developed to facilitate the FTFC design. Furthermore, by using the Lyapunov stability analysis, it is shown that all follower UAVs can track the leader UAV with predesigned offsets, and the distributed tracking errors are finite-time convergent. Finally, comparative simulation results are presented to show the effectiveness of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.