Abstract

Optimal control techniques such as model predictive control (MPC) have been widely studied and successfully applied across a diverse field of applications. However, the large computational requirements for these methods result in a significant challenge for embedded applications. While event-triggered MPC (eMPC) is one solution that could address this issue by taking advantage of the prediction horizon, one obstacle that arises with this approach is that the event-trigger policy is complex to design to fulfill both throughput and control performance requirements. To address this challenge, this paper proposes to design the event trigger by training a deep Q-network reinforcement learning agent (RLeMPC) to learn the optimal event-trigger policy. This control technique was applied to an active-cell-balancing controller for the range extension of an electric vehicle battery. Simulation results with MPC, eMPC, and RLeMPC control policies are presented along with a discussion of the challenges of implementing RLeMPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.