Abstract

The single-track two-wheeled (STTW) robot has the advantages of small size and flexibility, and it is suitable for traveling in narrow terrains of mountains and jungles. In this article, a reinforcement learning control method for STTW robots is proposed for driving fast in narrow terrain with limited visibility and line-of-sight occlusions. The proposed control scheme integrates path planning, trajectory tracking, and balancing control in a single framework. Based on this method, the state, action, and reward function are defined for narrow terrain passing tasks. At the same time, we design the actor network and the critic network structures and use the twin delayed deep deterministic policy gradient (TD3) to train these neural networks to construct a controller. Next, a simulation platform is formulated to test the performances of the proposed control method. The simulation results show that the obtained controller allows the STTW robot to effectively pass the training terrain, as well as the four test terrains. In addition, this article conducts a simulation comparison to prove the advantages of the integrated framework over traditional methods and the effectiveness of the reward function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.