Abstract

Intrusion detection systems (IDSs) are crucial in the security monitoring for the smart grid with increasing machine-to-machine communications and cyber threats thereafter. However, the multi-sourced, correlated, and heterogeneous smart grid data pose significant challenges to the accurate attack detection by IDSs. To improve the attack detection, this paper proposes Reinforcement Learning-based Adaptive Feature Boosting, which aims to leverage a series of AutoEncoders (AEs) to capture critical features from the multi-sourced smart grid data for the classification of normal, fault, and attack events. Multiple AEs are utilized to extract representative features from different feature sets that are automatically generated through a weighted feature sampling process; each AE-extracted feature set is then applied to build a Random Forest (RF) base classifier. In the feature sampling process, Deep Deterministic Policy Gradient (DDPG) is introduced to dynamically determine the feature sampling probability based on the classification accuracy. The critical features that improve the classification accuracy are assigned larger sampling probabilities and increasingly participate in the training of next AE. The presence of critical features is increased in the event classification over the multi-sourced smart grid data. Considering potential different alarms among base classifiers, an ensemble classifier is further built to distinguish normal, fault, and attack events. Our proposed approach is evaluated on the two realistic datasets collected from Hardware-In-the-Loop (HIL) and WUSTIL-IIOT-2021 security testbeds, respectively. The evaluation on the HIL security dataset shows that our proposed approach achieves the classification accuracy with 97.28%, an effective 5.5% increase over the vanilla Adaptive Feature Boosting. Moreover, the proposed approach not only accurately and stably selects critical features on the WUSTIL-IIOT-2021 dataset based on the significant difference of feature sampling probabilities between critical and uncritical features, i.e., the probabilities greater than 0.08 and less than 0.01, but also outperforms the other best-performing approaches with the increasing Matthew Correlation Coefficient (MCC) of 8.03%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call