Abstract
LoRa technology is widely used to build wireless networks in various Internet of Things (IoT) applications. As the increased popularity of IoT, LoRa also gains tremendous attention in recent years. In most of the LoRa networks, Aloha protocol is employed to send packets which may easily lead to collisions. Thanks to the orthogonality of spreading factor (SF) in modulate technique, a potential solution is obtained for this collision issue in LoRa network. In this study, a reinforcement learning (RL) based method called LR-RL is proposed to assign SF properly to alleviate collisions. The idea of LR-RL is mainly derived from the mathematical model of SF-channel traffic equilibrium, which indicates that SF with higher data rate must undertake more packet loads. Based on the system model, several similar methods such as LR-opt-pro, LR-greedy and LR-RL are put forward successively. The LR-RL algorithm owns the best performance in terms of packet collision rate (PCR). In addition, we carry out simulations to evaluate the performance of LR-RL in both one-hop and LoRa-Mesh networks. Results show that LR-RL has lower PCR than other SF allocation methods. Moreover, practical experiments are also conducted to verify the performance. All the experiments exhibit that LR-RL is a desirable method to reduce packet collisions in LoRa network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.