Abstract

Abstract In this paper we use a multilayer neural network to approximate the dynamics of nonlinear (mechanical) control systems. Furthermore, these neural network models are combined with offline trajectory planning, to form a model-based reinforcement learning (RL) algorithm, suitable for transition problems of nonlinear dynamical systems. We evaluate the algorithm on the swing-up of the cart-pole benchmark system and observe a significant performance gain in terms of data efficiency compared to a state-of-the-art model-free RL method (Deep Deterministic Policy Gradient (DDPG)). Additionally, we present first experimental results on a cart-triple-pole system test bench. For a simple transition problem, the proposed algorithm shows a good controller performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.