Abstract

This paper studies the non-zero-sum game output regulation problem (GORP) for a class of continuous-time multi-player linear systems. Without the knowledge of state and input matrices, the Nash equilibrium solution, N-tuple of feedback control policy, is learned through online data collected along the system trajectories. A key strategy is, for the first time, to combine techniques from reinforcement learning (RL), differential game theory, and output regulation for data-driven control design. Different from the existing literature of adaptive optimal output regulation, the feedforward matrices are considered nontrivial. Theoretical analysis shows the disturbance rejection and tracking ability of the closed-loop system. Simulation results demonstrate the efficacy of the developed data-driven control approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.