Abstract
Abstract In this paper, a brand-new adaptive fault-tolerant non-affine integrated guidance and control method based on reinforcement learning is proposed for a class of skid-to-turn (STT) missile. Firstly, considering the non-affine characteristics of the missile, a new non-affine integrated guidance and control (NAIGC) design model is constructed. For the NAIGC system, an adaptive expansion integral system is introduced to address the issue of challenging control brought on by the non-affine form of the control signal. Subsequently, the hyperbolic tangent function and adaptive boundary estimation are utilised to lessen the jitter due to disturbances in the control system and the deviation caused by actuator failures while taking into account the uncertainty in the NAIGC system. Importantly, actor-critic is introduced into the control framework, where the actor network aims to deal with the multiple uncertainties of the subsystem and generate the control input based on the critic results. Eventually, not only is the stability of the NAIGC closed-loop system demonstrated using Lyapunov theory, but also the validity and superiority of the method are verified by numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.