Abstract

AbstractThe reinforcing effect of carbon nanoparticles in an epoxy resin has been estimated with different approaches based on rheology, molecular dynamics (evaluated by differential scanning calorimetry, dielectric relaxation spectroscopy, and thermally stimulated depolarization current), and dynamic mechanical analysis. Carbon particles aggregate as the volume increases and form a fractal structure in the matrix polymer. The dispersion microstructure has been characterized by its viscoelastic properties and relaxation time spectrum. The scaling of the storage modulus and yield stress with the volume fraction of carbon shows two distinct exponents and has thus been used to determine the critical carbon volume fraction of the network formation (Φ*) for the carbon/epoxy dispersions. At nanofiller concentrations greater than Φ*, the overall mobility of the polymer chains is restricted in both dispersions and solid nanocomposites. Therefore, (1) the relaxation spectrum of the dispersions is strongly shifted toward longer times, (2) the glass‐transition temperature is increased and (3) the relaxation strength of both the secondary (β) and primary (α) relaxations increases in the nanocomposites, with respect to the pure polymer matrix. The dispersion microstructure, consisting of fractal flocs and formed above Φ*, is proposed to play the main role in the reinforcement of nanocomposites. Moreover, the network structure and the interface polymer layer (bond layer), surrounding nanoparticles, increases the relaxation strength and slows the cooperative α relaxation, and this results in an improvement of the mechanical properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 522–533, 2005

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.