Abstract

Abstract The reinforcement design of concrete cross-sections with the parabola-rectangle diagram is a well-established model. A global limit analysis, considering geometrical and material nonlinear behavior, demands a constitutive relationship that better describes concrete behavior. The Sargin curve from the CEB-FIP model code, which is defined from the modulus of elasticity at the origin and the peak point, represents the descending branch of the stress-strain relationship. This research presents a numerical method for the reinforcement design of concrete cross-sections based on the arc length process. This method is numerically efficient in the descending branch of the Sargin curve, where other processes present convergence problems. The examples discuss the reinforcement design of concrete sections based on the parabola-rectangle diagram and the Sargin curve using the design parameters of the local and global models, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.