Abstract
This paper investigated the influence of different shear span ratios, longitudinal (LR) and stirrup (SR) reinforcement ratios, and material types on the flexural and shear performance of reinforced ultra-high performance concrete (UHPC) beams. A series of bending tests with shear span ratios of 4.0, 1.5, and 1.0 were conducted. Results reveal that UHPC beams with a LR ratio of 2.53% exhibit 1.66, 2.00, and 1.45 times higher load capacity than that of the beams with a LR ratio of 1.34% at shear span ratios of 4.0, 1.5, and 1.0, respectively. A SR ratio of 1.40% can achieve 15% and 35% enhancement in load capacity of UHPC beams at shear span ratios of 1.5 and 1.0, respectively. The UHPC beams made with hybrid polyethylene and straight steel fibers have the highest load capacity compared to the beams with straight steel fibers and hooked steel fibers. The enhancement can achieve 8%, 5%, and 15% at shear span ratios of 4.0, 1.5, and 1.0, respectively. Furthermore, cross-section analysis, a novel truss-arch model, and strut-and-tie model were employed to theoretically calculate the load capacity of the UHPC beams with different failure modes. The relative errors of the cross-section analysis and truss-arch model are smaller than 9% and 25%. The findings of this work could provide guidelines for the structural design of UHPC beams under different loading conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.