Abstract

Infrastructure vulnerability toward seismic lateral loading within high seismicity has received massive attention by structural engineers and designers. This is for the purpose to provide a reliable alternative material that strengthening the bending and shear of slabs, columns and reinforced concrete (RC). Despite the utilized approaches of strengthening the concrete structure based on fiber reinforced polymers (FRP) is considerably new technique, exploring more reliable and robust methodologies is the motive of scholars for better structural behaviour understanding. In the current research, two soft computing models called artificial neural network (ANN) and support vector regression (SVR) are applied to predict lateral confinement coefficient (Ks). The models are developed based on gathered dataset from open source researches for the lateral confinement coefficient of columns wrapped with carbon FRP (CFRP) and their corresponding parameters including column width, length and thickness (b, h and t mm), column radius (r mm), compressive strength of concrete (f_c^') and elastic modulus (EFRP). Results indicated the superiority of the ANN model for predicting Ks over the SVR model. The application of the soft computing showed an optimistic approach for the structural lateral confinement coefficient determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.