Abstract

Since activated carbon is a highly porous material with a sizable internal surface area, it is simple to adsorb a wide range of substances when used in energy storage devices, sewage treatment, water purification, catalyst, food processing and other applications. This work focuses on the viability of using mixed fruit peels as a precursor for the carbonization process with physical activation to produce activated carbon. The Phase confirmation was examined using X-ray diffraction (XRD). Fourier transform infrared spectrometer (FTIR) concludes the functional groups present in mixed fruit peels activated carbon. Field emission scanning electron microscopy (FESEM) was used to analyze the morphological makeup and textural traits of the activated carbon that was produced. Energy Dispersive X-Ray Analysis (EDX) shows the elemental composition of nano powdered carbon. Raman spectroscopy confirms the presence of graphene that appears at 1580cm-1. Electrochemical Impedance Spectroscopy (EIS) and Nyquist plot in order to evaluate the conductivity performance over the frequency range of 1mHz to 10 kHz, measurements were used. Carbon yield analysis were conducted and analyzed. Wettability of the mixed fruit peels were examined using contact angle. The Mixed Fruit peels activated carbon were subjected to low temperature plasma to increase its surface properties, The outcomes were evaluated, and the charge transfer resistance and the polarization resistance for air plasma treatment is 1.43 and 0.2 ohms. Hydrophilic nature is occurred when treated with air plasma.  According to these findings, air plasma treatment of mixed fruit peel activated carbon improves its surface characteristics, making it suitable for electrode in energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call