Abstract

With the recent and continuous growth of large metropolis, the development, management and improvement of their urban multi-modal transport networks become a compelling need. Although the creation of a new transport mode often appears as a solution, it is usually impossible to construct at once a full networked public transport. Therefore, there is a need for efficient solutions aimed at prioritizing the order of construction of the multiple lines or modes that a transport operator might want to construct to increase its offer. For this purpose, we propose in this paper a simple and quick-to-compute methodology, called REINFORCE, to prioritize the order of construction of the lines of a newly designed transport mode by maximizing the transport network performances and enhancing the transport network resilience, as described by complex networks metrics. REINFORCE could also be helpful to support the rapid and quick response to disruptions by setting up or reinforcing an adapted emergency transport line (e.g., bus service) over a set of predefined itineraries.

Highlights

  • The continuous increase of the world’s population in urban areas (Nations 2018) and the need for ensuring the urban mobility of such large volumes of people demand for adapting and augmenting the current transport offer in large agglomerations by considering the addition of new transport modes or the development of new transport lines

  • By using such a model we provide a holistic view of the transport system that captures most of the relevant features of a complex transport network system; (iii) we consider both network topology and traffic condition in our approach, by including both travel demand and travel time in the computation of the accessibility metrics that we use to quantify the impact on performance for given areas that derives from the addition of a transport lines

  • Traditional metrics we study the impact of adding new public transport lines by quantifying their impact through traditional metrics that do not take demand into account

Read more

Summary

Introduction

The continuous increase of the world’s population in urban areas (Nations 2018) and the need for ensuring the urban mobility of such large volumes of people demand for adapting and augmenting the current transport offer in large agglomerations by considering the addition of new transport modes or the development of new transport lines. As highlighted by Aljoufie et al (2011), a strong relationship exists between the urban growth and the transport network extension The latter is accentuated by the fact that some transport networks already operate at their capacity limits (International transport forum 2016; Dolinayova et al 2020). Due to the urgency of the situation and the need to stagger over time the construction of a public transport network for budget constraints and roadworks occupancy, it is essential to optimally schedule the construction of the transport network in order to quickly improve the network performances. Such analyses are at the interface of network design and graph augmentation. The first field focuses on the problems of planning and

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.