Abstract

The term phenotype is so commonly used that we often assume that we each mean the same thing. The general definition, the set of observable characteristics of an individual resulting from the interaction of their genotype with the environment, is often left to the eye of the beholder. Whether applied to the multiple levels of biological phenomena or the intact human being, our ability to characterize, classify, and analyze phenotype has been limited by measurement deficits, computing limitations, and a culture that avoids the generalizable. With the advent of modern technology, there is the potential for a revolution in phenotyping, which incorporates old and new in structured ways to dramatically advance basic understanding of biology and behavior and to lead to major improvements in clinical care and public health. This revolution in how we think about phenotypes will require a radical change in the scale at which biomedicine operates with significant changes in the unit of action, which will have far-reaching implications for how care, translation, and discovery are implemented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.