Abstract

Reichardt’s dye, 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate (1), has a very large negative solvatochromism in the long wavelength absorption in the UV–vis spectrum when going from nonpolar to polar solvents. This shift provides the basis of the important and widely used ET(30) scale of solvent polarity. While many papers have investigated the properties of this dye, only a few describe the 1H and 13C NMR assignments in any detail. We report herein, our detailed analysis of the proton and carbon chemical shift assignments for this molecule based on 1D and 2D NMR measurements, as well as those of the protonated and methoxy derivatives 2 and 3, respectively. Much to our surprise, some of the critical chemical shift values we observed were significantly different from those previously reported. In addition, we discovered a good correlation not only between the solvent polarity and the chemical shifts of carbons C1 and C4 of Reichardt’s dye (1), but also between the concentration of the dye and these chemical shifts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.