Abstract

Medical planning for space exploration is based on the “floating” blood bank model to store life-saving red blood cells (RBCs) for emergencies. The “floating” blood bank approach is not sufficient in cases where multiple crewmembers are affected by space anemia. In these situations, long-term preserved RBCs will be vital to guarantee the health and safety of crew members. Transfusable RBC units can only be refrigerated for 42 days or frozen at −80 °C. However, storing frozen RBCs at −80 °C is challenging during the confined condition of long-duration space flight. Freeze-dried, viable RBCs would be an appropriate alternative because they can be stored without cooling, are predicted to have a shelf-life of years, and could be transfused immediately after rehydration. This study explores if freeze-dried RBCs can be rehydrated and transfused in reduced gravity with similar outcomes in recovery as observed at Earth gravity. Experiments analyzing freeze-dried RBC recoveries, rehydration fluid dynamics, and transfusion flow rates were analyzed utilizing an experimental glovebox in simulated 0 g during parabolic flights. RBC recoveries and rehydration fluid dynamics for volumes of 5 mL and 10 mL were the same in simulated 0 g compared to results obtained at 1 g. A clinically acceptable range of flow rates for slow intravenous infusion and rapid fluid resuscitation was possible with the simple augmentation of a hand-pumped clinical pressure bag around a unit of rehydrated RBCs. The results demonstrate the potential feasibility of using freeze-dried cells for healthcare during deep-space exploration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call