Abstract

ABSTRACT Rehydration kinetics of high‐pressure pretreated (100, 300, and 500 MPa for 10 min) and osmotically dehydrated pineapple (Ananas comsus) cubes (2 × 2 × 1 cm) were studied at different temperatures (5, 25, and 35°C), and compared with ordinary osmotically dehydrated samples. The effective diffusion coefficients for water and solute were determined, assuming the rehydration process to be governed by Fickian diffusion. Diffusion coefficients for water absorption into the tissue as well as for solute diffusion out of the tissue were found to be lower in the samples subjected to high‐pressure treatment. Further, the diffusion coefficients decreased with increase in treatment pressure. A possible explanation for the observed decrease in diffusion coefficients can be attributed to the permeabilization of cell membranes, the release of cellular components, and structural changes of the cell materials. The diffusion coefficients were correlated with rehydration temperature (T) and treatment pressure (P) by an Eq. of the form D = A exp[–(B.P + C/T)], where A, B, and C are constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.