Abstract
We analyze reheating scenarios where a hidden sector is populated during reheating along with the sector containing the Standard Model. We numerically solve the Boltzmann equations describing perturbative reheating of the two sectors, including the full dependence on quantum statistics, and study how quantum statistical effects during reheating as well as the non-equilibrium inflaton-mediated energy transfer between the two sectors affects the temperature evolution of the two radiation baths. We obtain new power laws describing the temperature evolution of fermions and bosons when quantum statistics are important during reheating. We show that inflaton-mediated scattering is generically most important at radiation temperatures T ∼ Mϕ/4, and build on this observation to obtain analytic estimates for the temperature asymmetry produced by asymmetric reheating. We find that for reheating temperatures Trh ≪ Mϕ/4, classical perturbative reheating provides an excellent approximation to the final temperature asymmetry, while for Trh ≫ Mϕ/4, inflaton-mediated scattering dominates the population of the colder sector and thus the final temperature asymmetry. We additionally present new techniques to calculate energy transfer rates between two relativistic species at different temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.