Abstract

We study the post-inflationary dynamics for reheating and freeze-in dark matter in the Higgs-R2 inflation model. Taking the perturbative approach for reheating, we determine the evolution of the temperature for radiation bath produced during reheating and determine the maximum and reheating temperatures of the Universe. Adopting a singlet scalar dark matter with a conformal non-minimal coupling and a vanishing Higgs-portal coupling, we discuss the freeze-in production of dark matter both from the non-thermal scattering during reheating and the thermal scattering after reheating. We find that thermal scattering is dominant for dark matter production in our model due to the high reheating temperature. The reheating temperature in our model is determined dominantly by the Higgs condensate to be up to about 1014 GeV and dark matter with masses up to about 109 GeV can be produced with a correct relic density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.