Abstract

This study was conducted to investigate the recovery of motor function in rats through the silent information regulator factor 2-related enzyme 1 (Sirt1) signal pathway-mediated rehabilitation training. Middle cerebral artery occlusion (MACO) was used to induce ischemia/reperfusion injury. The rats were subjected to no treatment (model), rehabilitation training (for 21 days), resveratrol (5 mg/kg for 21 days), and rehabilitation training plus resveratrol treatment. 24 h later, They were assessed for neurobehavioral score and motor behavior score and expression of brain derived-nerve neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB). Compared with sham group, models had significantly higher neurobehavioral scores, balance beam, and rotary stick scores. Compared with the model group, rats in rehabilitation training and resveratrol groups had significantly reduced scores. Compared with rehabilitation training or resveratrol treatment alone, rehabilitation plus resveratrol further reduced the scores significantly. The percentage of cells expressing BDNF and TrkB and expression levels of BDNF and TrkB were similar between the model and sham groups, significantly increased in rehabilitation training and resveratrol groups, and further increased in rehabilitation training plus resveratrol group. These results indicate that rehabilitation raining plus resveratrol can significantly improve the recovery of motor function in rats after cerebral ischemic injury, which is likely related to the upregulation of the BDNF/TrkB signaling pathway.

Highlights

  • Cerebrovascular disease is a major hazard to human health and life

  • Resveratrol was purchased from Sigma, USA; BCA protein assay kit, mouse anti-GAPDH monoclonal antibody, and horseradish peroxidase-labeled goat anti-rabbit IgG (H plus L) were purchased from Beytime Biotechnology, Beijing; rabbit antiBDNF and tyrosine kinase receptor B (TrkB) polyclonal antibodies were purchased from Abcam, USA; Trizol kit and One-Step RT-PCR kit were purchased from Invitrogen, USA

  • Electrophoresis apparatus, transfer apparatus, and gel imaging system were purchased from Bio-Rad, USA; plate reader was from TECAN, Swiss, and fluorescence microscope AF6000 was obtained from Leica, Germany

Read more

Summary

Introduction

Cerebrovascular disease is a major hazard to human health and life. Ischemia resulting from middle cerebral artery occlusion (MCAO) accounts for nearly 80% of cerebrovascular diseases, which have higher incidence, disability, and mortality rate and are heavy burden to the patient’s family and society [1,2,3]. The clinical treatments of ischemic cerebral vascular diseases is mainly relied on early thrombolysis, nerve protection and rehabilitation. Rehabilitation training is most widely used, which helps to improve the patient’s body movement, feeling, language, and cognition ability. Studies have shown that rehabilitation training can increase cerebral blood flow, promote the survival of neurons after cerebral infarction, inhibit cerebral swelling, and stimulate the secretion of neuron growth factors and neurotrophic factors to improve or restore nerve and limb movement ability [4,5,6,7]. In most of the previous studies, drug treatment or rehabilitation training alone is used to improve the neurological and motor function. Fewer studies have dealt with combined therapy of drug and rehabilitation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call