Abstract

Early identification of motion disparities in Anterior Cruciate Ligament reconstructed (ACL-R) athletes may better post-operative decision making when returning athletes to sport. Existing return to play assessments consist of assessments of muscle strength, functional tasks, patient-reported outcomes, and 3D coordinate tracking. However, these methods primarily depend on the medical provider's intuition to release them to participate in an unrestricted activity after ACL-R that may cause reinjury or long-term impacts. This study proposes a wearable sensor-based system that helps track athlete rehabilitation progress and return to sport decision making. For this, we capture gait data from 89 ACL-R athletes during their walking and jogging trials. The raw gyroscope data collected from this system is used to extract causal features based on Nolte's phase slope index. Features extracted from this study are used to develop computational models that classify ACL-R athletes based on their reconstructed knee during two visits (3-6 months & 9 months) post ACL-R surgery. The classifier's performance degradation in detecting ACL-R athletes injured knee during multiple visits supports athletic trainers and physicians' decision-making process to confirm an athlete's safe return to sport.Clinical Relevance- This study develops computational models based on causal analysis of gait data to support athletic trainers and medical practitioners' decision to return athletes to sport post ACL-R surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call