Abstract
The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.
Highlights
Rehabilitation robotics is a relatively young and rapidly growing field, with increasing penetration into the clinical environment [1]
This review aims to provide historical and clinical background of relevance to the field of rehabilitation robotics for engineers, basic and clinical neurophysiologists and therapists interested in and entering this exciting field
Rehabilitation training of the upper and lower limb should be founded on neurophysiological insights, independent of whether it is performed conventionally, or with the support of robotic devices
Summary
Rehabilitation robotics is a relatively young and rapidly growing field, with increasing penetration into the clinical environment [1]. The goal was to enhance the effects of functional training by providing increased therapy intensity and adaptive support in a controlled way. In a 1910 patent, Theodor Büdingen proposed a ‘movement cure apparatus’, a machine driven by an electric motor to guide and support stepping movements in patients with heart disease. In the 1930s, Richard Scherb developed the ‘meridian’, a cable-driven apparatus to move joints for orthopaedic therapy. This human-powered mechanotherapy machine already supported multiple interaction modes, ranging from passive to active-assisted and active-resisted movements. A first robotic rehabilitation system was based on the concept of continuous passive motion (CPM), a stiff interaction mode in which the robot moves the joints along a predefined trajectory, independent of the contribution of the patient [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.