Abstract

An adequate and balanced diet is of utmost importance in recovery and rehabilitation. “Rehabilitation nutrition” for injury recovery of athletes is similar to sports nutrition, except for the differences that concern the prevention of the risk or presence of sarcopenia, malnutrition, or dysphagia. Rehabilitation nutrition also aims, combined with training, to an adequate long-term nutritional status of the athlete and also in physical condition improvement, in terms of endurance and resistance. The aim of this paper is to define the proper nutrition for athletes in order to hasten their return to the sports after surgery or injury. Energy intake should be higher than the energy target in order to fight sarcopenia—that is 25–30 kcal/kg of body weight. Macro- and micro-nutrients play an important role in metabolism, energy production, hemoglobin synthesis, lean mass and bone mass maintenance, immunity, health, and protection against oxidative damage. Nutritional strategies, such as supplementation of suboptimal protein intake with leucine are feasible and effective in offsetting anabolic resistance. Thus, maintaining muscle mass, without gaining fat, becomes challenging for the injured athlete. A dietary strategy should be tailored to the athlete’s needs, considering amounts, frequency, type and, most of all, protein quality. During rehabilitation, simultaneous carbohydrates and protein intake can inhibit muscle breakdown and muscle atrophy. The long-term intake of omega-3 fatty acids enhances anabolic sensitivity to amino acids; thus, it may be beneficial to the injured athlete. Adequate intakes of macronutrients can play a major role supporting athletes’ anabolism.

Highlights

  • Sport injury and fear of injury are important barriers to participation in sport, despite the health benefits of sports activities

  • Mamerow et al [35] found that 24 h muscle synthesis rate was 25% more effective in healthy women and men when fed with protein evenly distributed across breakfast, lunch, and dinner compared to isoenergetic and isonitrogenous diets with uneven protein distribution across meals

  • The long-term intake of omega-3 fatty acids (4 g/day) enhances anabolic sensitivity to amino acids [51,52], having a sensitizing effect on the molecular signaling pathways. These findings suggest that fish oil derived omega-3 fatty acid intake may be beneficial to the injured athlete— relevant data are few and less consistent compared with protein intake [49]

Read more

Summary

Introduction

Sport injury and fear of injury are important barriers to participation in sport, despite the health benefits of sports activities. The incidence, prevalence and type of sport injuries vary from male to female as well as between age groups [1]. The direct cost of an injury is determined by calculating the expense of using health-care services to avoid, diagnose, and treat injury and its complications [1]. A 52-week prospective analysis in elite adolescent athletes by Rosen et al found that the prevalence of 1-year injury rate was 91.6%. The overall rate of injury was 4.1 for every 1000 h of sport exposure, and on average 3 out of 10 (30.8%) elite teenage athletes reported injuries per week [2]. A recent study by Polinder et al estimated that the annual cost of sport injuries in patients visiting an emergency department in the Netherlands was 413 million euros every year [3]. There are 40 thousand football-related accidents in a year in Switzerland, which leads to a loss of 500 thousand working days

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call