Abstract
Non-coding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional non-coding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant–gene expression associations in a variety of human tissues, RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a web server at https://regvar.omic.tech/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.