Abstract

Articular chondrocytes in vivo are exposed to a changing osmotic environment under both physiological (static load) and pathological (osteoarthritis) conditions. Such changes to matrix hydration could alter cell volume in situ and influence matrix metabolism. However the ability of chondrocytes to regulate their volume in the face of osmotic perturbations have not been studied in detail. We have investigated the regulatory volume decrease (RVD) capacity of bovine articular chondrocytes within, and isolated from the matrix, before and following acute hypotonic challenge. Cell volumes were determined by visualising fluorescently-labelled chondrocytes using confocal laser scanning microscopy (CLSM) at 21 degrees C. Chondrocytes in situ were grouped into superficial (SZ), mid (MZ), and deep zones (DZ). When exposed to 180mOsm or 250mOsm hypotonic challenge, cells in situ swelled rapidly (within approximately 90 sec). Chondrocytes then exhibited rapid RVD (t(1/2) approximately 8 min), with cells from all zones returning to approximately 3% of their initial volume after 20 min. There was no significant difference in the rates of RVD between chondrocytes in the three zones. Similarly, no difference in the rate of RVD was observed for an osmotic shock from 280 to 250 or 180mOsm. Chondrocytes isolated from the matrix into medium of 380mOsm and then exposed to 280mOsm showed an identical RVD response to that of in situ cells. The RVD response of in situ cells was inhibited by REV 5901. The results suggested that the signalling pathways involved in RVD remained intact after chondrocyte isolation from cartilage and thus it was likely that there was no role for cell-matrix interactions in mediating RVD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.