Abstract

Individual risk of type 2 diabetes (T2D) is modified by perturbations of adipose mass, distribution and function. To investigate mechanisms responsible, we explored the molecular, cellular, and whole-body effects of T2D-associated alleles near KLF14. We show that KLF14 diabetes-risk alleles act in adipose tissue to reduce KLF14 expression, and modulate, in trans, expression of 385 genes. We demonstrate that, in human cellular studies, reduced KLF14 expression increases pre-adipocyte proliferation but disrupts lipogenesis, and, in mice, adipose-specific deletion of Klf14 partially recapitulates the human phenotype of insulin resistance, dyslipidemia and T2D. We show that KLF14 T2D risk-allele carriers shift body fat from gynoid to abdominal stores, and display a marked increase in adipocyte cell size: these effects on fat distribution, and the T2D-association, are female-specific. Metabolic risk associated with variation at this imprinted locus depends on both the sex of the subject, and of the parent from whom the risk-allele derives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.