Abstract

In transgenic mice, homozygous mutations of trophoblast-specific transcription factors such as Hand1, Mash-2, I-mfa or GCM1 revealed their key regulatory roles in induction, maintenance or differentiation of distinct placental trophoblast subpopulations in vivo. Descriptive studies have shown that several of these factors are also expressed in the human placenta, suggesting that the molecular mechanisms governing trophoblast differentiation could be similar in mice and men. While an increasing number of putative developmental regulators are being identified in the human placenta, little information is available regarding whether the particular factors play an essential role in trophoblast differentiation processes such as formation of anchoring villi, placental bed invasion or syncytialization. However, expression of abundant trophoblast-specific products such as hormones can be regarded as a hallmark of differentiation, suggesting that the factors controlling their transcription could also be involved in the developmental processes of the placenta. Indeed, studies in different model systems revealed that the human homologues of murine trophoblast-specific transcriptional regulators interact with the promoter regions of typical placental genes such as aromatase P450 (CYP19), chorionic gonadotrophin (CG) or placental lactogen (PL). Additionally, the unique combination of more broadly distributed transcription factors of the Sp or Ap-2 protein family in a particular trophoblast cell type is required to govern mRNA expression in a differentiation-dependent manner. Here, we will summarize our present knowledge on these individual transcription factors that are involved in human trophoblast function and differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call