Abstract

CD4+ Foxp3+ regulatory T cells (Treg) are essential to maintain immune tolerance, as their loss leads to a fatal autoimmune syndrome in mice and humans. Conflicting findings have been reported concerning their metabolism. Some reports found that Treg have low mechanistic target of rapamycin (mTOR) activity and would be less dependent on this kinase compared with conventional T cells, whereas other reports suggest quite the opposite. In this study, we revisited this question by using mice that have a specific deletion of mTOR in Treg. These mice spontaneously develop a severe and systemic inflammation. We show that mTOR expression by Treg is critical for their differentiation into effector Treg and their migration into nonlymphoid tissues. We also reveal that mTOR-deficient Treg have reduced stability. This loss of Foxp3 expression is associated with partial Foxp3 DNA remethylation, which may be due to an increased activity of the glutaminolysis pathway. Thus, our work shows that mTOR is crucial for Treg differentiation, migration, and identity and that drugs targeting this metabolism pathway will impact on their biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.