Abstract
Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) is an unconventional member of the gelsolin family of actin-regulatory proteins. Unlike typical gelsolin-related proteins with three or six G domains, GSNL-1 has four gelsolin-like (G) domains (G1-G4) and exhibits calcium-dependent actin filament severing and capping activities. The first G domain (G1) of GSNL-1 is necessary for its actin-regulatory activities. However, how other domains in GSNL-1 participate in regulation of its functions is not understood. Here, we report biochemical evidence that the second G domain (G2) of GSNL-1 has a regulatory role in its calcium-dependent conformation and actin-regulatory activities. Comparison of the sequences of gelsolin-related proteins from various species indicates that sequences of G2 are highly conserved. Among the conserved residues in G2, we focused on D162 of GSNL-1, since equivalent residues in gelsolin and severin are part of the calcium-binding sites and is a pathogenic mutation site in human gelsolin causing familial amyloidosis, Finish-type. The D162N mutation does not alter the inactive and fully calcium-activated states of GSNL-1 for actin filament severing (at 20 nM GSNL-1) and capping activities (at 50 nM GSNL-1). However, under these conditions, the mutant shows reduced calcium sensitivity for activation. By contrast, the D162N mutation strongly enhances susceptibility of GSNL-1 to chymotrypsin digestion only at high calcium concentrations but not at low calcium concentrations. The mutation also reduces affinity of GSNL-1 with actin monomers. These results suggest that G2 of GSNL-1 functions as a regulatory domain for its calcium-dependent actin-regulatory activities by mediating conformational changes of the GSNL-1 molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.