Abstract

<abstract><p>The role of excitatory interneurons (EINs) in the cortical has received increasing attention in the discussion of absence seizures. Numerous physiological experiments have confirmed the correlation between EIN and absence seizures. However, the dynamic mechanisms underlying this relationship are not well understood, and there are some challenges in selecting appropriate stimulation strategies for pyramidal clusters. In this study, we incorporated EIN into the previous Taylor model and developed an improved thalamocortical coupled model consisting of ten neuronal populations. Initially, we investigated the excitatory induction effect of EIN to pyramidal clusters and the external input of EIN. Then, four different targeted treatment approaches (deep brain stimulation (DBS), current balanced biphasic pulse (CBBP), 1:0 coordinated resetting stimulation (1:0 CRS), and 3:2 CRS) were applied to the pyramidal clusters. Moreover, we established two quantitative indices to evaluate the stimulation effects. The results showed that modifying the external input of EIN and the coupling strength projected onto the pyramidal clusters can effectively transition the system from an absence seizure state to other normal states. Additionally, inputs from the left compartment were found to reduce the generation of abnormal discharge regions in the right compartment. Furthermore, considering the treatment effects and current consumption, the 3:2 CRS stimulation strategy appeared to be the most suitable treatment approach for the pyramidal clusters. This work introduces a novel coupled model containing EIN, which contributes new theoretical foundations and insights for the future treatment of absence seizures.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call