Abstract

BackgroundThe aberrant expression of CD40, a co-stimulatory receptor found on the antigen-presenting cells, is involved in the pathogenesis of various degenerative diseases. Our previous study demonstrated that the reduction of cytosolic phospholipase A2 alpha (cPLA2α) protein overexpression and activation in the spinal cord of a mouse model of ALS, hmSOD1 G93A, inhibited CD40 upregulation in microglia. The present study was designed to determine whether cPLA2α has a direct, participatory role in the molecular events leading to CD40 induction.MethodsCultures of primary mouse microglia or BV-2 microglia cell line exposed to lipopolysaccharide (LPS) or interferon gamma (IFNγ) for different periods of time, in order to study the role of cPLA2α in the events leading to CD40 protein induction.ResultsAddition of LPS or IFNγ caused a significant upregulation of cPLA2α and of CD40, while prevention of cPLA2α upregulation by a specific oligonucleotide antisense (AS) prevented the induction of CD40, suggesting a role of cPLA2α in the induction of CD40. Addition of LPS to microglia caused an immediate activation of cPLA2α detected by its phosphorylated form, while addition of IFNγ induced cPLA2α activation at a later time scale (4 h). The activation of cPLA2α is mediated by ERK activity. Suppression of cPLA2α activity inhibited superoxide production by NOX2-NADPH oxidase and activation of NF-κB detected by the phosphorylation of p65 on serine 536 at 15 min by LPS and at 4 h by IFNγ. Inhibition of NOX2 prevented NF-κB activation and CD40 induction but did not affect cPLA2α activation, suggesting cPLA2α is located upstream to NOX2 and NF-κB. The activation of cPLA2 by LPS was mediated by both adaptor proteins downstream to LPS receptor; TRIF and MyD88, while the activation of cPLA2α by IFNγ was mediated by the secreted TNF-α at 4 h. The early activation of STAT1α (detected by phospho-serine727 and phoshpo-tyrosine701) by IFNγ and the late activation of STAT1α by LPS were not affected in the presence of cPLA2α inhibitors, indicating that STAT1α is not under cPLA2α regulation.ConclusionsOur results show for the first time that cPLA2 upregulates CD40 protein expression induced by either LPS or IFNγ, and this regulatory effect is mediated via the activation of NOX2-NADPH oxidase and NF-κB. Cumulatively, our results indicate that cPLA2α may serve as a pivotal amplifier of the inflammatory response in the CNS.

Highlights

  • The aberrant expression of CD40, a co-stimulatory receptor found on the antigen-presenting cells, is involved in the pathogenesis of various degenerative diseases

  • Results Cytosolic phospholipase A2 alpha (cPLA2α) upregulation regulates the overexpression of CD40 in microglia Addition of 50 ng/ml LPS or 10 ng/ml IFNγ to BV-2 microglia cell line for 24 h caused a significant (p < 0.0001) elevation of and cPLA2α of CD40 protein expression, as shown in the double-immunofluorescence staining analysis (Fig. 1a, b)

  • Incubation with the corresponding sense that had no effect on the elevation of cPLA2α protein expression by either of the inducers did not affect the elevation of CD40 protein expression

Read more

Summary

Introduction

The aberrant expression of CD40, a co-stimulatory receptor found on the antigen-presenting cells, is involved in the pathogenesis of various degenerative diseases. The interaction between CD40 and its ligand, CD40L (CD154), is one of multiple signals necessary for a productive immune response [8,9,10]. The CD40-CD154 interaction promotes a wide spectrum of molecular and cellular processes including, immunoglobulin class switching, cell differentiation and maturation, B-cell growth, and expression of other co-stimulatory molecules such as MHC class II, ICAM-1, VCAM-1, E-selectin, LFA-3, B7.1, and B7.2) [11, 12]. Several studies show that the aberrant expression of CD40 is involved in the initiation and maintenance of various neurodegenerative diseases including multiple sclerosis, Alzheimer’s disease, HIV-1-associated dementia and cerebral ischemia [16,17,18,19,20], and other diseases as rheumatoid arthritis and atherosclerosis [18, 21, 22]. Blockade of CD40-CD40L signaling has been shown to provide a significant beneficial effect in a number of animal models of neurological human diseases [1, 18, 23,24,25,26,27,28]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call