Abstract

The coordination of cell division and cell expansion are critical to normal development of tissues. In plants, cell wall mechanics and the there from arising cell shapes and mechanical stresses can regulate cell division and cell expansion and thereby tissue growth and morphology. Limited by experimental accessibility it remains unknown how cell division and expansion cooperatively affect tissue growth dynamics. Employing a cell-based two dimensional tissue simulation we investigate the regulatory role of a range of cell division rules on tissue growth dynamics and in particular on the spatial heterogeneity of growth. We find that random cell divisions only add noise to the growth and therefore increase growth heterogeneity, while cell divisions following the shortest new wall or along the direction of maximal mechanical stress reduce growth heterogeneity by actively enhancing the regulation of growth by mechanical stresses. Thus, we find that, beyond tissue geometry and topology, cell divisions affect the dynamics of growth, and that their signature is embedded in the statistics of tissue growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.