Abstract
Regulation of glycogen metabolism is of vital importance in organisms of all three kingdoms of life. Although the pathways involved in glycogen synthesis and degradation are well known, many regulatory aspects around the metabolism of this polysaccharide remain undeciphered. Here, we used the unicellular cyanobacterium Synechocystis as a model to investigate how glycogen metabolism is regulated in nitrogen-starved dormant cells, which entirely rely on glycogen catabolism to resume growth upon nitrogen repletion. We identified phosphoglucomutase 1 (PGM1) as a key regulatory point in glycogen metabolism, and post-translational modification as an essential mechanism for controlling its activity. We could show that PGM1 is phosphorylated ata residue in the regulatory latch domain (Ser 47) during nitrogen starvation, which inhibits its activity. Inactivation of PGM1 by phosphorylation at Ser 47 prevents premature degradation of the glycogen stores and appears to be essential for survival of Synechocystis in the dormant state. Remarkably, this regulatory mechanism seems to be evolutionary conserved in PGM1 enzymes, from bacteria to humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.