Abstract

BackgroundOptimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops.ResultsIn this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes.ConclusionsThe results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2593-6) contains supplementary material, which is available to authorized users.

Highlights

  • Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops

  • This study aimed to dissect the regulatory network controlling the maize SAR, a process believed to be attenuated by intense artificial selection during domestication and breeding to avoid the adverse effects of SAR under densely planted field conditions [1]

  • Maize seedlings grown under the simulated shade condition displayed phenotypes characteristic of SAR, including elongated leaves and less anthocyanin accumulation, compared to those grown under high R/FR (Additional file 1: Figure S1), indicating the validity of such an experimental condition

Read more

Summary

Introduction

Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. Maize perceives the shade mainly as a decrease in the red (R):far-red (FR) light ratio caused by the depletion of photosynthetically active radiation (PAR) by neighboring plants. Such a signal serves as a warning of forthcoming competition from neighbors and triggers a number of physiological alterations of maize. Phytochromes exist in two photo-convertible isoforms: R light triggers the photoconversion of phytochromes from their inactive Pr

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call